Minerals

Dr. Raghad Emad Al-Deen Naji Ph.D. Clinical Biochemistry

- Understand the importance of the minerals in the body
- List the difference between trace and ultra-trace elements
- Classify trace elements according to the essentiality
- Outline calcium & phosphorus absorption, transport, metabolism & excretion
- State the adverse effects of excess or deficiency

Are inorganic elemental atoms

that are **Essential** nutrients.

They are not changed by digestion or metabolism.

Functions of Minerals

- 1. participate with <u>enzymes</u> in metabolic processes (cofactors) Fe, Cu, Zn.
- 2. <u>Structural</u> functions (Ca, P in bone; S in keratin).
- 3. Acid-base and water balance (Na, K, Cl).
- 4. Nerve & muscle function (Ca, Na, K).
- 5. <u>Blood clotting</u>: Ca.
- 6. **Unique** functions (Fe, Co).
- 7. Synthesis of <u>Hormones</u>: thyroid hormones (iodine).

Classification of minerals

 A- Macro or Major minerals
 Present in body tissues at concentrations more than 50 mg/kg.

2. Required in amounts > 100 mg per day.

3. Ex: Calcium, Magnesium, Phosphorus, Sodium, Potassium, Sulfur

Classification of minerals B- Micro or Trace minerals

- Present in body tissues at concentrations less than 50 mg/kg.
 Required in amounts < 100 mg per day)
- 3. Ex: Iron, Iodine, Copper, Manganese, Chloride, Zinc, Fluoride, Tin, Arsenic, Nickel...

Nutritionally Important

Minorals

MACRO		TRACE	
ELEMENT	g/Kg	ELEMENT	mg/Kg
Ca	15	Fe	20-50
Р	10	Zn	10-50
Mg	0.4	Сυ	1-5
Na	1.6	Мо	1-4
К	2	Se	1-2
S	1.5		0.3-0.6
		Mn	o.2-0.5

I. Macrominerals: (are required in amounts > 100 mg per day)

#	Macro- minerals	Function	Disease/ Deficiency
1	Calcium	Component of bone and teeth, muscle contraction, gland secretion and hormone action.	osteoporosis
2	Phosphorus	Component of bone and teeth, ATP and other metabolites	General weakness
3	Magnesium	Component of bone, enzyme cofactor and ATP formation in mitochondria.	
4	An SEC.28		
5	Sodium	Electrolyte balance, nerve and muscle regulation	Electrolyte imbalance
6	Potassium	Electrolyte balance, nerve and muscle regulation	٢

II. Micro- Minerals: required in amounts < 100 mg per day

#	Micro- Mineral	Function	Disease/ Deficiency
1	Iron	Heme, enzyme cofactor	Microcytic, hypo-chromic anemia
2	Iodine	Thyroid hormones	Goiter, hypothyroidism
3	Zinc	Enzyme cofactor, important for taste buds formation	Poor wound healing, loss of taste sensation
4	Copper	Enzyme cofactor, carried by ceruloplasmin	Menkes' disease Wilson's disease
5	Chromium	Present in glucose tolerance factor (GTF), necessary for the action of insulin	Diabetes mellitus and Impaired glucose tolerance test r (GTT)

II. Micro- Minerals: required in amounts < 100 mg per day (Continous)

6	Selenium	Present in glutathione peroxidase enzyme in RBC's, acts as an antioxidant to get rid of cytosolic hydrogen peroxide (H ₂ O ₂)		
7	Molybdenum	Enzyme cofactor (xanthine oxidase)		
8	Fluoride	Strengthens teeth and prevents dental caries	Dental caries	
9	Cobalt	Component of vitamin B12		

Factors Affecting-Requirements

1. Physiological state.

2.Tissue storage: Bone, Liver, Specific proteins to hold and transport.

3. Form of food: organic or inorganic.

FACTORS AFFECTING-ABSORPTION

- **1.** Amount of mineral present in the food.
- 2. Gastrointestinal diseases.
- 3. Physiological state and Tissue storage .
- 4. Substances in foods decrease absorption of minerals:

<u>Oxalate</u>, prevents absorption of calcium in spinach. <u>Phytate</u>, a form of phosphorous in most plants makes phosphte poorly available.

5. Substances increase absorption of minerals: Vit. C, increase iron absorption.

Deficiencies and Excesses

 Most minerals have an optimal range.

Ca = 8.5-10.5 mg/dl, Cu = 80-150 ug/dl, Mg = 1.8-2.4 mg/dl, Ph= 2.5-4.5 mg/dl, Fe = 70- 180 ug/dl

- . Below leads to deficiency symptoms.
- 2. Above leads to toxicity symptoms.
- 3. Deficiency or toxicity symptoms May take many months to develop.
- 4. Time impacted by body stores.
- 5. Physiological state.

Calcium

- Total ca in the body about 1-1.5 Kg.
- 99% seen in the bone
- 1% in extracellular fluid
- An adult need 500 mg/day and child 1200 mg/day
- Requirement increase to 1500 mg/day during pregnancy & lactation
- After age of 50 there is a general tendency for osteoporosis , which may be prevented by increase Ca (1500 mg/day) + vit. D. (20 micro g/day)

Ca absorption

Absorption is taking place in the 1st & 2nd part of the duodenum.

Ca is absorbed against a concentration gradient & require energy.

Absorption requires a carrier protein (Calbindin), helped by Ca-dependent-ATPase

Factors increase absorption

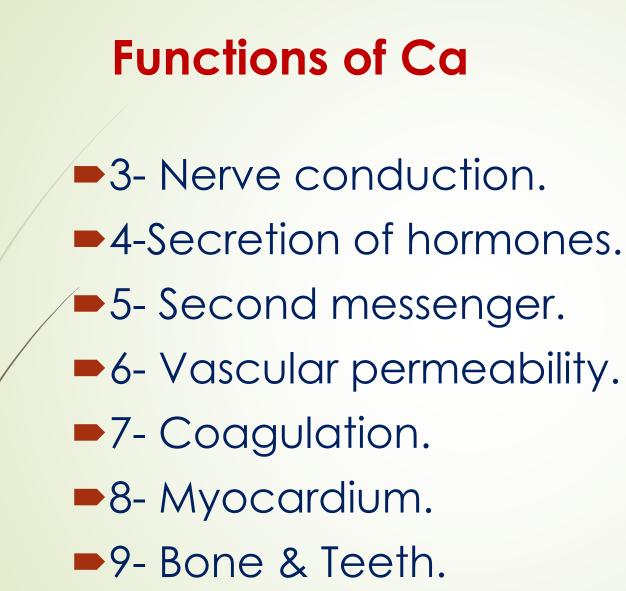
- 1-Vit. D: calcitriol induces the synthesis of carrier protein (calbindin) in the intestinal epithelial cells, so facilitate the absorption of Ca.
- 2- PTH : increase Ca transport from intestinal cells
- 3- Acidity: favors ca absorption
- 4- amino acids: lysine & arginine increase ca absorption.

Factors decrease absorption

- I- Phytic acid: present in cereals, fermentation & cooking reduce phytate.
- 2- Oxalate: present in some leafy vegetables , cause formation of insoluble calcium oxalate
- 3- malabsorption syndromes: fatty acids is not absorbed, causing formation of insoluble calcium salt of fatty acid
- 4- phosphate: high Pi content will cause precipitation of Ca-phosphate.

Ca in cells

- Ca present in extracellular & intracellular compartments, but mainly extracellular.
- The cell membrane is generally impermeable to Ca ion.
- Ca influx into the cell is by Na+/Ca++ exchange mechanism. This mechanism is rapid but has low affinity for Ca.
- Entry of Ca++ into mitochondria is by Ca uniport system.
- But Ca ions exit by Na+ /Ca++ antiport system, which in turn depend on Na+ /H+/ATPase pump.


Functions of Ca

- 1- activation of enzymes:
- Calmodulin is Ca binding regulatory protein, can bind with 4 Ca ions.
- This binding leads to activations of enzymes.
- Calmodulin is part of various regulatory kinases

```
+ Calmodulin
Ca++
Ca-bound calmodulin
Kinase----\rightarrow Active kinase
Enzyme -----> Phosphorylated enzyme
               biological effect
```

Functions of Ca

- 2- Muscles : Ca mediates excitation &
- contraction of muscle fibers.
- Ca is released from sarcoplasmic reticulum.
- Ca activates ATPase, increase action of actin & myosin and facilitates excitation-contraction coupling.
- Ca decreases neuromuscular irritability, and its deficiency causes tetany.

Ca in Blood

- I- Normal level = 9—11 mg/dl (10 mg/dl 0f Ca++ = 5 mEq/L).
- 2- Ionized Ca : about 5 mg/dl of Ca in ionized form and metabolically active . Another 1 mg/dl is complexed with phosphate, bicarbonate & citrate.
- These 2 forms are diffusible from blood to tissues.
- 3- Protein bound Ca: about 4 mg/dl is bound to proteins and is non-diffusible.

Factors regulating blood ca level

- 1- Vit. D. (Calcitriol) : increase absorption
- 2- PTH : causes demineralization & decalcification.
- 3- Calcitonin : released from thyroid gland , decrease blood Ca level.
- 4- Phosphorus .
- 5- Children .
- 6- Serum protein.
- 7- Alkalosis & acidosis.
- 8- Kidney threshold .

